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Abstract

Conditions for the onset of nonpenetrative convection in a horizontal Boussinesq fluid layer subject to a step change in temperature
are studied using propagation theory. A wide range of Prandtl numbers and two different kinematic boundary conditions are considered.
It is shown that for high Rayleigh numbers, critical conditions for the onset of convective motion reproduce exactly those for the
unsteady Rayleigh–Bénard instability. Present results extend those of previous research and show a tendency of the rigid–rigid and
free–rigid critical curves to converge for low Prandtl numbers. Comparison between present and previously reported results on critical
conditions for the onset of instabilities and onset time using different methods yields good agreement on a middle to high Prandtl number
range. A ratio of 10 between experimentally measured and theoretically predicted onset times is suggested for stress-free bounded
systems.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nonpenetrative convection is defined by Adrian [1] as
the unstable flow field that derives from the existence of a
fluid layer heated from below (or cooled from above) with
adiabatic top (or bottom if cooled from above), resembling
Bénard convection [2]. This thermal boundary condition
precludes the existence of a steady flow regime. Nonpene-
trative convection represents a reasonable assumption in
a variety of physical problems, that range from ventilation
and air conditioning (like, for instance, cold storage rooms
and warehouses with poor insulation from one side) to
earth sciences, particularly regarding the dynamics of the
planetary boundary layer [3]. In this paper, the attention
is focused on the study of conditions for the onset of impul-
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sively generated nonpenetrative convection. Here, the base
state of the system to be perturbed, at difference from the
one that gives rise to Bénard convection [4], is unsteady
due to the existence of a thermally diffusive state whose
temporal rate of change is high at the very beginning of
the evolution. Hence, a stability model able to deal with
this difficulty is to be considered.

After early approaches to the analysis of the stability of
unsteady systems (e.g. �frozen time� and �quasi-static�
models, reviewed by Gresho and Sani [5] and Homsy [6],
respectively), the study of the onset of manifest convection
in high Rayleigh number fluid layers impulsively heated or
cooled began with Foster [7], who used an initial value
technique, so-called �amplification model�, which considers
a transient evolution of the base state. In this case, distur-
bances that cause the onset of convection are assumed to
occur only initially. The major drawback of this method
is that determination of amplification requires the know-
ledge of amplitudes of initial disturbances, for all the
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Nomenclature

as, bs coefficients of Eqs. (10) and (11), respectively,
s = 1, . . ., 5 (integer), or 1

(ax, ay) dimensionless horizontal wavevector
a dimensionless horizontal wavenumber,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2x þ a2y
q

C concentration [kmol/m3] or designation of con-
stant value

Cp specific heat of the fluid at constant pressure
[J kg�1 K�1]

D mass diffusion coefficient [m2/s]
D(Æ) ordinary derivative with respect to f, d(Æ)/df
ov(w)(Æ) partial derivative, o(Æ)/ov or o2(Æ)/ovw
DP deep pool acronym
g gravity vector (pointing in the direction of z

axis) [m s�2]
k thermal conductivity of the fluid [W m�1 K�1]
L depth of the fluid layer [m]
Pr Prandtl number, ma�1

r slope of the geometrical sequence to extrapolate
critical Ras values

t time (dimensionless if no superscript)
u velocity, (u, v, w) (dimensional or not depending

on the superscript. w is f-dependent if no super-
script is present)

Ra Rayleigh number, gbðh�max � h�minÞL3m�1a�1

Ras s-dependent Rayleigh number, s3/2Ra
TBL thermal boundary layer acronym
(x, y, z) Cartesian coordinates (dimensionless if no

superscript is present)

Greek symbols

a thermal diffusivity of the fluid [m2 s�1]
b thermal expansion coefficient [K�1]
k relative difference coefficient, maxf{100 ·

j1 � h0/h0DPj}
dh dimensionless thermal penetration depth
D Laplacian operator (dimensional or not depend-

ing on the superscript)

D1 horizontal Laplacian operator (dimensional or
not depending on the superscript)

c concentration coefficient of expansion [kg/kmol]
f self-similar vertical coordinate, z=

ffiffi
t

p

h temperature (self-similar if no superscript,
otherwise dimensional or dimensionless)

m kinematic viscosity of the fluid [m2 s�1]
r temporal growth rate for disturbances
s definition for time in the self-similar framework,

s = t

Subscripts

0 base state
1 disturbance, or correlative assignment to con-

stant
2–5 correlative assignment to constant
b bulk
c critical state
DP deep pool assumption: f-only dependence
linear linear boundary forcing
1 infinite Prandtl number
m experimental detection
min minimal condition
max maximal condition
u thermal advection dominance over pure diffusiv-

ity
step step boundary forcing
s s-dependent variable: Cs � s/C

Superscripts

* dimensional length, temperature, time, velocity
or differential operator

� dimensionless temperature, velocity or differen-
tial operator

– root-mean-square
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wavelengths present on the eigenfunction expansion. As
this is impossible, Foster�s approach consisted of a heuristic
procedure that combined the assumption of several distur-
bance patterns along with experimental observations [8].
Using a different approach, Jhaveri and Homsy [9] and
Kim and Kim [10] used random forcing functions to solve
an initial value problem to find the onset times, both for
step and ramp-heated systems of high Rayleigh numbers,
suggesting a definition of the onset time as that correspond-
ing to a certain excess of the computed Nusselt number
with respect to the purely conductive one.

More recently, Kim et al. [11] studied the impulsively
driven Rayleigh–Bénard problem with initial stratification,
using the method called by these authors �propagation the-
ory� [12–14]. Its basis lies on the assumption that most of
the disturbances are confined within the thermal penetra-
tion depth, which is considered as a length scale, leading
to the transformation of the linearized equations into
self-similar forms. In more recent contributions, Chung
et al. [15] and Choi et al. [16] suggest new definitions for
onset times, taking into account nonlinear effects that come
from the numerical simulation of the unsteady Rayleigh–
Bénard problem and compare them with results obtained
using propagation theory. In the latter work, the influence
of initial stratification on the distribution of the mentioned
time scales is analyzed.
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In an experimental context, Spangenberg and Rowland
[17] studied the onset of evaporative convection using
Schlieren photography techniques, while Foster [18], by
means of radiometry, showed that surface temperature in
suddenly cooled evaporative systems evolves in a linear
fashion. Plevan and Quinn [19], Blair and Quinn [20] and
later Tan and Thorpe [21], measured onset times in noneva-
porative systems whose stability depends on the concentra-
tion of gases into water. Their results, in the context of the
present research, are commented in Section 4. Goldstein
and Volino [22], studied the onset of convection on a thick
fluid layer heated impulsively from below. Their work pre-
sents also an extensive review of literature focused on the
transient features of natural convection.

In this paper, propagation theory was the chosen stabil-
ity method to assess the onset of nonpenetrative convective
motion. For high thermal perturbations, it is shown that
this phenomenon behaves the same as the onset of
unsteady Rayleigh–Bénard convection. This result allows
for a side by side comparison of present computations with
numerical and experimental results reported in the context
of the latter problem. Some new findings in that regard are
presented and discussed as well.

2. Problem description

An initially quiescent horizontal fluid layer, well mixed
at temperature h� ¼ h�max, infinite on its horizontal dimen-
sion but finite, with height L, on the vertical axis z*, is sud-
denly cooled, by dropping its surface temperature, at time
t* = 0 and z* = 0, to h� ¼ h�min. Surface is to be kept at this
lower temperature for t* > 0 (Fig. 1).

For high enough temperature step: dh� ¼ h�max � h�min, a
buoyancy-driven circulation is induced. This problem can
be modeled using continuity, Navier–Stokes and energy
equations on a Boussinesq fluid, with no heat sources pres-
ent. Surface tension effects in the free–rigid case are
neglected in the present study. This assumption is reason-
able in the present context, as shown experimentally by
Davenport and King [23] in the case of linearly heated deep
reservoirs. Scales to be used are L to form dimensionless
coordinates (x, y, and z), L2a�1 to form dimensionless time,
t, aL�1 to form dimensionless velocity base state and
perturbations, ð~u0;~v0; ~w0Þ and ð~u1;~v1; ~w1Þ, respectively.
mag�1b�1L�3, to form dimensionless temperature perturba-
tion, ~h1, whereas the dimensionless base temperature, ~h0, is
scaled to range between 0 and 1: ~h0 ¼ ðh�0 � h�minÞðh

�
max�
Fig. 1. Problem configuration. z* axis points downward.
h�minÞ
�1. a, m and b are the thermal diffusivity, kinematic vis-

cosity, and thermal expansion coefficient of the fluid,
respectively. g is the magnitude of the gravity vector, which
points in the same direction of the z axis. In the latter
expressions, the subscript 0 refers to the base state and 1
to the perturbed one.

A first order expansion for the dimensionless tempera-
ture and velocity is considered, with the form ~h ¼ ~h0 � ~h1,
and ~u ¼ ~u0 þ ~u1 ¼ ~u1 ¼ ð~u1;~v1; ~w1Þ, respectively. The minus
sign on the expansion for temperature means that positive
perturbations have a cooling effect. The base state is that of
a horizontally infinite, quiescent fluid layer. Neglecting sec-
ond order terms, the following set of equations is obtained
for the vertical velocity and temperature perturbations:

1

Pr
ot � eD� �eD~w1 ¼ eD1

~h1; ð1aÞ

ot~h1 � Ra~w1oz~h0 ¼ eD~h1; ð1bÞ

where Pr = ma�1 corresponds to the Prandtl number and
Ra ¼ gbðh�max � h�minÞL3m�1a�1 corresponds to a Rayleigh
number based on the overall temperature step, eD �
oxx þ oyy þ ozz and eD1 � eD � ozz, provided the dimension-
less equation for the base state is satisfied:

ot~h0 ¼ ozz~h0; ð2aÞ
~h0ðt ¼ 0; zÞ ¼ 1; ~h0ðt > 0; z ¼ 0Þ ¼ oz~h0
ðt P 0; z ¼ 1Þ ¼ 0. ð2bÞ

The derivation of stability equations using propagation
theory is analogous to that of Kang and Choi [14] and
Yang and Choi [24]. Hence, only the essential steps are
given here. In propagation theory it is stated that, for the
case of thermal convection in systems where instabilities
are confined mainly into the thermal boundary layer
(TBL), a balance between viscous and buoyant forces can
be made, such that it is possible to scale dimensionless ver-
tical velocity perturbations with time as j ~w1

~h
�1

1 j� d2h,
where dh /

ffiffi
t

p
is the dimensionless thermal penetration

depth. From the latter relation and dimensional analysis
it can also be inferred that [24]:

½~h1ðz; tÞ; ~w1ðz; tÞ� ¼ ½tnh1ðz=
ffiffi
t

p
Þ; tnþ1w1ðz=

ffiffi
t

p
Þ�; ð3Þ

where n is a parameter. Now, stability equations are repre-
sented in a new coordinate system defined as ðt; f ¼ z=

ffiffi
t

p
Þ,

instead of (t, z), while ~h1 and ~w1 turn to h1 and w1 in the
newly defined system. To avoid confusion, t will be defined
as s. The present criterion for the setting of n is to find the
lowest possible onset times from the characteristic prob-
lem. To this purpose, it must be set to zero [24]. Addition-
ally, Choi et al. [16] and Chung et al. [15] argue that this
condition can be also derived from the assumption that
the onset time occurs when the growth rates of the root-
mean-square values of the base state temperature and of
the temperature perturbations are equal. In the context of
a system with an imposed heat flux, the latter assumption
leads to a different n value of 1/2 [25,26].
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Eqs. (1) are cyclic in the horizontal plane. Then, modes
with wavenumbers ax and ay for the x and y axis, respec-
tively, are considered. Introducing (3) · exp[i(axx + ayy)]
in the latter system, noting that os(Æ) = �(2s)�1of(Æ) and
that oz(Æ) = s�1/2of(Æ), the set of stability equations to be
solved is:

ðD2 � a2sÞ
2 þ 1

2Pr
ðfD3 � a2sfDþ 2a2sÞ

� �
w1 � a2sh1 ¼ 0;

ð4aÞ

D2 þ 1

2
fD� a2s

� �
h1 þ w1RasDh0 ¼ 0; ð4bÞ

where Dn(Æ) = dn(Æ)/dfn, as ¼ s1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
and Ras =

s3/2Ra.
The scaling assumed here, which considers the hypothe-

sis that disturbances are confined mainly into a thermal
penetration depth, makes Eqs. (4) valid for small values
of time only. In this case, the base state for temperature,
h0, can be expressed as a function exclusively of f. This
kind of system, representative of a thermally semi-infinite
one, is commonly named �deep pool� system (the acronym
dp will be adopted hereafter). Its TBL is small compared
with the thickness of the fluid layer.

For large values of s, when equations are not self-similar
anymore, it has been shown [24,27] that eigenvalues for (4)
can still be found. In those works, it was also shown that
asymptotic convergence in time to results obtained with
the frozen time model is achieved. However, the validity
at intermediate values of time of the thermal scaling pro-
posed here is not clear. Regarding this topic, an analysis
on the validity of this model, in the context of nonpenetra-
tive convection, is being presently prepared [28]. For the
system with no-slip top and bottom surfaces (named herein
as the rigid–rigid case), boundary conditions for the per-
turbed quantities are:

h1 ¼ w1 ¼ Dw1 ¼ 0 in f ¼ 0; ð5aÞ
Dh1 ¼ w1 ¼ Dw1 ¼ 0 in f ¼ 1=

ffiffiffi
s

p
. ð5bÞ

In the case with stress-free top and no-slip bottom (defined
also as the free–rigid case), boundary conditions which are
to be applied to Eqs. (4) are:

h1 ¼ w1 ¼ D2w1 ¼ 0 in f ¼ 0; ð6aÞ
Dh1 ¼ w1 ¼ Dw1 ¼ 0 in f ¼ 1=

ffiffiffi
s

p
. ð6bÞ

The marginal stability problem to be considered is to solve:
minasRas, where as and Ras satisfy (4), with boundary con-
ditions (5) or (6), in the rigid–rigid and free–rigid cases,
respectively. This procedure is to be applied to the self-sim-
ilar system, valid for small values of time. Under this con-
dition, the present definition of the Rayleigh number is the
same as the one used in the classical Rayleigh–Bénard
problem, based on the temperature difference between the
top and bottom horizontal boundaries, since here, the bot-
tom boundary holds its higher temperature throughout the
whole lapse of time during which the present stability
model is valid.
3. Solution method

Eqs. (4) and the boundary conditions (5) and (6) are
homogeneous. Then, the value of D2w1(0) and Dw1(0)
can be assigned arbitrarily in the rigid–rigid and free–rigid
cases, respectively [14,27]. To solve the problem posed in
the previous section, a solver based on the shooting method
using a fourth order Runge–Kutta numerical integration
formula was implemented. Convergence to minima was
achieved using a Newton–Raphson scheme. Validation of
the numerical implementation was done by analyzing the
classical rigid–rigid Rayleigh–Bénard problem with a step
change in the bottom temperature [11], using Eqs. (4).
Monotonic, albeit slow convergence for increasing time,
close to the well known value of the critical Rayleigh num-
ber of 1708 was found for different Prandtl numbers. This
result numerically checks the classic result for the steady
state problem, which states that the onset of the Ray-
leigh–Bénard instability does not depend on the Prandtl
number [4]. This statement is recalled expressing (4) in
the (z, t) space, re-scaling w1 and h1 and their derivatives
to ~w1 and ~h1 via (3), and taking the limit when s ! 1.
The resulting equations are ðozz � a2Þ2~w1 ¼ a2~h1 and
ðozz � a2Þ~h1 þ ~w1Ra ¼ 0, regardless of the value of Prandtl
number, for which no assumption has been made but to
be positive. Now, as the resulting expressions are only
functions of z, it is noted that the latter equations also cor-
respond to the linearized stability system obtained assum-
ing an exponential growth rate, exprt, with a critical
stability condition r = 0 [24]. This approach corresponds
to the �marginal state� variation of the frozen time model
[5]. With this set of equations, the computed critical
Rayleigh number and its associated wavenumber are
1707.7618 and 3.11632, respectively, in agreement with
the pair (1707.765,3.12) proposed by Sparrow et al. [29]
and (1707.7618,3.11635), computed by Mizushima [30].

In numerical terms, the DP system assumption means
that the outer boundary to be considered goes to infinite.
To reproduce this fact into the computation of eigenvalues
prior to the minimization process, the extrapolation proce-
dure described by Chen et al. [31] for critical Ras numbers
was used. Roughly, this approach is based on the observa-
tion that different Rasn numbers, obtained for different
outer depths fn, decrease approximately as a geometrical
sequence. Then, the asymptotic Rayleigh number can be
computed as Ra0s � Ra0sn þ rðRa0sn � Ra0sn�1

Þ=ð1� rÞ, where
r is the slope of the approximately logarithmic line
obtained using different pairs (fn, Rasn).

4. Results and discussion

4.1. Base state solutions

The base state solution can be calculated using Laplace
transforms, which yields Eq. (7). This approach has the
advantage of producing a series with faster convergence
than that obtained through Fourier decomposition:
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h0ðf; sÞ ¼ 1þ
X
nP0

ð�1Þnþ1 erfc
nffiffiffi
s

p þ f
2

� ��

þ erfc
nþ 1ffiffiffi

s
p � f

2

� ��
. ð7Þ

The DP solution can be readily obtained solving (2) on a
semi-infinite domain:

h0
dp

ðfÞ ¼ erfcðf=2Þ. ð8Þ

For values of s lower or close to 0.01 very small relative dif-
ferences between Eqs. (7) and (8) are observed. Computing
the latter as k = maxf{100 · j1 � h0/h0DPj}, for s = 0.005,
0.007, 0.01, 0.02 and 0.05, k < 10�12, 10�12, 10�10, 10�4

and 0.1, respectively.
4.2. Comparison with the unsteady Rayleigh–Bénard

problem

The deduction of the nonpenetrative stability problem in
the light of the propagation model yields an interesting
similitude with the unsteady Rayleigh–Bénard problem
studied by Kim et al. [11]. Eqs. (4a) and (4b) have the same
analytical expression than those corresponding to the latter
work. The only difference between them is the thermal
condition imposed at the boundary away from the step
change in temperature (named herein as the outer bound-
ary). In the present problem, the boundary condition
limf!1 Dh1 = 0 is imposed, while in Kim et al. [11],
limf!1h1 = 0 is imposed instead, representing the exis-
tence of an isothermal outer boundary. It can be shown,
however, that both types of outer boundary condition must
be satisfied simultaneously in both problems. For fixed
Rayleigh and Prandtl numbers, an onset time sc exists such
that h1 = 0 for s < sc = sc(Pr, Ra) (i.e., the system does not
experience convection before the onset time). On the other
hand, the similarity condition inherent to the present prop-
agation model imposes the scaling dh �

ffiffiffi
s

p
� 1ðs n 1Þ

for the thermal penetration depth, and the boundary con-
dition Dh1ð1=

ffiffiffi
s

p
Þ ¼ 0. Then, considering, as stated previ-

ously, that the perturbations are mainly confined within
the TBL, and assuming continuity of the temperature dis-
turbance, necessarily h1ð1=

ffiffiffi
s

p
Þ ¼ 0, which is a mere conse-

quence of the small penetration depth occurring at small
times. As this holds for arbitrarily small onset times (and,
consequently, arbitrarily large values of the Rayleigh num-
ber), if limf!1Dh1 = 0, then limf!1h1 = 0. Consequently,
both problems, the impulsively isothermally heated Ray-
leigh–Bénard and the present nonpenetrative convection,
are equivalent, provided the existence of a Rayleigh num-
ber range that support the deep-pool assumption.

Another interesting feature of the eigensystem (4) is that
its eigenvalues are insensitive to the type of outer boundary
condition considered, free or rigid, as can be verified with
arguments similar to those of the previous paragraph.
Hence, according to the propagation model, for high Ray-
leigh numbers the only boundary that matters to eigen-
values (both in the thermal and kinematic sense) is the
one subjected to the impulsive change on temperature. This
conclusion agrees with that of Foster [7], who noticed that
motion was �decoupled from the bottom�, analyzing the
problem of a surface-stress-free fluid layer subject to a step
change in temperature, using the amplification model.
Another consequence of this conclusion is that the free–
rigid results to be presented here should be valid for the
free–free and free–rigid variations of the Rayleigh–Bénard
convection. The same applies, of course, to the free–free
nonpenetrative convection problem, which offers a reason-
able approximation to systems where a nearly stress-free,
strong and stable density interface exists between two
rather homogeneous layers of fluid. The latter, so-called
�thermocline� [32], is commonly found in lakes and
reservoirs.
4.3. Solution of the eigenvalue problem

As s 6 0.01 (which is bonded to the assumption of a
highly supercritical system) must hold to keep the self-sim-
ilarity of the base state, a lower bound to valid Rayleigh
numbers is imposed

RaðPrÞ P RaminðPrÞ ¼
RasðPrÞ
0:013=2

. ð9Þ

Despite the existence of Kim et al. [11] results for the
impulsively heated Rayleigh–Bénard problem, whose
mathematical posing fully coincides with that of the pres-
ent nonpenetrative convection problem as discussed in pre-
vious section, the eigenvalues for the rigid–rigid case were
re-calculated here to serve as an additional validation of
the numerical results obtained. Differences on computed
values of Ras were found only for Pr = 100, and even in
that case they were not higher than about 1%. In the case
of the as computed values, a difference (of about 10%)
was found for Pr = 1. The latter are indicative of an appar-
ent error on Kim et al.�s [11] solution. Table 1 shows the
minimum (as, Ras) eigenvalues computed for the DP system
for a range of Prandtl numbers and the corresponding
values of the minimum valid Rayleigh number, given by
(9).

Results for the DP free–rigid case, which have not been
previously reported in the context of the present problem
and method, are shown in Fig. 2. The Ras parameter varies
exponentially for Pr 6 1 and is virtually constant for values
of Pr > 1000. The same trend occurs for the rigid–rigid
case, as previously commented by Kim et al. [11,27]. Con-
sidering comments on Section 4.2, present data extend the
results reported in the former work and are new to the non-
penetrative problem context. The following correlations,
valid for 0.01 6 Pr 6 1000, can be used to predict the onset
time and the most unstable mode in the case of the DP sys-
tem, for the free–rigid or rigid–rigid cases, with an error
bound of 2%:



Table 1
Critical (as, Ras) parameters found for the DP system, as a function of Prandtl number

Pr Rigid–rigid Free–rigid

Present work KCC99

as Ras as Ras Ramin as Ras Ramin

0.01 0.824 1799.06 0.82 1799.1 1.80 · 106 0.809 1675.92 1.68 · 106

0.1 0.813 219.10 0.81 219.1 2.19 · 105 0.766 180.98 1.81 · 105

0.71 0.725 53.56 – – 5.36 · 104 0.637 36.58 3.66 · 104

1 0.702 44.81 0.63 44.81 4.48 · 104 0.607 29.36 2.94 · 104

7 0.589 24.73 – – 2.47 · 104 0.447 12.68 1.27 · 104

100 0.538 20.97 0.54 20.70 2.10 · 104 0.337 9.01 9.01 · 103

1000 0.533 20.70 0.53 20.69 2.07 · 104 0.320 8.67 8.67 · 103

1 0.533 20.67 0.53 20.67 2.07 · 104 0.317 8.63 8.63 · 103

The fourth and fifth columns (labelled as KCC99) show the critical numbers found for the transient Rayleigh–Bénard problem studied by Kim et al. [11].
Columns 6 and 9 show the minimum Rayleigh numbers that guarantee that the DP assumption is valid both for the rigid–rigid and for the free–rigid
system, respectively.
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Table 2
Parameters aj and bj of Eqs. (10) and (11) for the rigid–rigid (RR) and
free–rigid (FR) conditions

j aj bj

RR FR RR FR

1 9.8371 5.9017 0.5291 0.3066
2 1.9022 1.3279 0.2923 0.5002
3 2.0867 2.5505 0.6329 1.1196
4 0.8502 0.7730 0.3347 0.1971
5 1.1421 1.3132 2.0924 3.2267

Fig. 2. Upper panel: effect of the Prandtl number on Ras for the rigid–rigid and rigid–free cases. Lower panel: effect of the Prandtl number on the
wavenumber of the fastest growing horizontal mode, ac. Symbols represent calculated points, corresponding to Table 1: squares for the rigid–rigid case
and circles for the free–rigid case. Curves represent interpolated results using the models given by Eqs. (10), and (11) and parameter sets given by Table 2.
sc ¼ a1 a2 þ
a3
Pr

� 	a4h ia5
Ra�2=3; ð10Þ

ac ¼ b1 þ b2 erfc
b3
Pr

� �b4
" #b5

0@ 1As�1=2
c . ð11Þ

Corresponding values of the parameters aj are given in
Table 2. For higher values of the Prandtl number (Pr >
1000), sc = a1Ra�2/3 and ac ¼ b1s�1=2

c replace (10) and
(11), respectively. Here, a1 = 7.531 and 4.207, b1 =
0.533 and 0.317, for the rigid–rigid and free–rigid cases,
respectively.



Fig. 3. Normalized amplitude functions for (minus) temperature and vertical velocity disturbances (lower and upper half, respectively). Solid lines
represent the rigid–rigid case in both sets. From left to right, the latter curves show computed results for Pr = 0.01 and Pr! 1. The dotted and dashed
curves represent the free–rigid case for Pr = 0.01 and Pr !1, respectively. The bold monotonic curve exhibits (minus) the base state temperature, given
by (8).
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The amplitude functions corresponding to the results in
Table 1 are represented in Fig. 3. Here, a TBL can be
defined as the f value for which the base temperature
reaches a value of 0.99. This limiting condition is depicted
in Fig. 3 with a vertical line. With this definition, the latter
figure shows a tendency of the amplitude curves to displace
out of the TBL with increasing Prandtl number. The same
trend was previously observed by Kang and Choi [14] in
the DP system associated with the Bénard–Marangoni
convection.

For Prandtl numbers greater than about one, it is found
that vertical velocity disturbances reach depths that exceed
by a factor close to 2 the thermal penetration depth. The
increasing of the penetration of disturbances with Prandtl
number means that the higher the latter parameter, the dee-
per is the layer where disturbances exist (Fig. 3). At the
same time, as the Prandtl number increases, the system
becomes less stable as shown by the monotonically decreas-
ing marginal stability curves of the upper panel of Fig. 2.

An interesting feature of the eigenfunctions is that only
for medium to large Prandtl numbers (greater that about
10) the asymptotic decay of the disturbances with depth
in the case of the free–rigid case is noticeably slower than
in the rigid–rigid case (Fig. 3). This trend is consistent with
the separation between the stability curves for different
boundary conditions depicted in Fig. 2 (upper panel),
which appears to be minimum for low Prandtl numbers
and maximum in the infinite Prandtl number case. As some
liquid metals, like mercury, have very low Prandtl numbers
(�0.025 at room temperature), present results suggest a
way to avoid the kinematic effect of the boundary condi-
tion in laboratory experiments with a proper choice of
the fluid.

Computed critical wavenumbers exhibit slight variations
with the Prandtl number, for values of this parameter lower
than about 0.1 and larger than about 10 (Fig. 2, lower
panel). In the intermediate range (0.1 < Pr < 10), however,
they present rather steep change rates with Pr. As the onset
of convection is marked by the formation of regular cells,
within the intermediate Pr range those disturbances should
be rather more sensitive to small spatial variations in fluid
properties than in the low and high Pr cases. Consequently,
it is believed that this factor may influence to some extent
the reproducibility of experiments and possibly explain in
part the large dispersion in the horizontal wavelengths
experimentally obtained by [8, Fig. 4].

Present results have some differences with respect to pre-
vious numerical calculations using other approaches to the
stability analysis. In particular, in the amplification model
[7] an amplification factor, built upon the normalized RMS
of the disturbance of the vertical velocity field, is defined as
�wðtÞ ¼ ½

R 1

0
~w2
1ðz; tÞdz=

R 1

0
~w2
1ðz; 0Þdz�

1=2, where ~w1ðz; 0Þ repre-
sents the initial disturbance condition, which has been
commonly chosen as white noise with equal amplitude
coefficients (see [7,33,5]). When �wðtÞ grows beyond some
predefined factor, the corresponding time is marked as
the onset time. In this context, different thresholds for �w
induce the estimation of different times. Such need for a
definition of limiting conditions precludes a straightfor-
ward comparison between results coming from different
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methods and care should be taken. The onset time pre-
dicted by the present method is analyzed in more detail
next.

4.4. Analysis of onset time

To assess the onset time, commonly three classes of
characteristic times are considered. The first corresponds
to that which comes indirectly from the eigensystem (4),
sc. The second one is that which marks the thermal domi-
nance of advection over diffusion, su. Finally, the third one
is that at which fluid motion or temperature increase can be
experimentally detected, sm. It is likely that the better the
experiment, the closer is sm to su since normally scalar
change sensing is used. Experimental verification of sc
seems to be more difficult, as it marks the beginning of con-
vection, with a very small amplitude fluid motion
[8,23,24,15,16]. On the other hand, there must be a lapse
of time when velocities are small enough to make the
advective term in the energy equation negligible compared
with the diffusive one [34], that is 0 < w�

1oz�
~h � aeD~h for s

such that sc < s < su. Then, sc must always be lower that su.
In the case of results for the rigid–rigid case, Kim et al.

[11] supported the conjecture of Foster [8] about the exis-
tence of a scaling factor of about 4, between time sc coming
from eigenvalue calculations and time sm corresponding to
observations of convective motion. To this purpose, they
Fig. 4. Left panel: comparison between critical wavenumbers computed using
[7] (circles), for the free–rigid case, step change in temperature, with Pr = 7.
between results obtained using propagation and amplification models with Ra

model, while the dashed line shows the latter predictions amplified by a factor
�w ¼ 10; squares represent equivalent results with �w ¼ 100.
used the propagation model with the temperature step
change setup and compared their theoretical results with
the experimental ones by Ueda et al. [35]. Further compar-
isons were later reported by the same research group
[27,16, and references therein] for large Prandtl numbers.

For the free–rigid case, theoretical results using the
amplification model are given by Foster [7] for step and
ramp changes in surface temperature with an isothermal
bottom and some Ra–Pr combinations. However, no
experimental results were available to validate the former
case. Also in a theoretical framework, for Pr = 7 and
free–free conditions, defining the onset time, su, from a
Nusselt number departure of 1% above the conductive
state, Jhaveri and Homsy [9], found that su � Ra�2/3

(named hereafter as the �2/3 power law), and also that
ac � Ra1/3, showing that the latter relations hold for
Ra P 30 · (27/4)p4 � 2 · 104, which is close to the corre-
sponding lower limit of this parameter proposed in Table
1. From their data and onset time definition (considered
herein as being representative of su), the value Ras3=2u �
350 is obtained. This value is greater than the critical
Ras ¼ 12:68 ¼ Ras3=2c obtained from Table 1, thus giving
a value of the ratio su/sc = (350/12.68)2/3 � 9.1.

In Fig. 4 (right panel), results from both the present
propagation theory and the amplification model [7] for dif-
ferent Prandtl numbers and Ra = 106 are shown. It can be
seen that for the free–rigid case both models differ on
the present propagation model (solid line) and the ones reported by Foster
Right panel: critical time as a function of Prandtl number; comparison
= 106. Solid line represents results obtained with the present propagation
of 5. Circles represent results from Foster [7], using an amplification factor
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computed onset times by a factor close to 5, when �w ¼ 10 is
used as an amplification factor, and the Prandtl number is
greater than about 10. For lower values of Pr, the propaga-
tion model yields higher onset times than the ones found
using the amplification model. It is noteworthy that the
best amplification ratios for the rigid–rigid experiment by
Foster [8] were found between �w ¼ 103 and 108 (the latter
theoretical calculations were previously reported by Foster
[36]). Taking these results into account, it can be concluded
that the tuned amplification factor can also be understood
as a measure of the disturbance level that a system can
afford just before the onset of convection. Wavenumbers
were calculated with the present model using the data for
Pr = 7 shown in Table 1, i.e., as ¼ 0:447 ¼ ac

ffiffiffiffi
sc

p
. Fig. 4

(left panel) shows good agreement between present compu-
tations of the critical wavenumber ac and those of Foster
[7] for Rayleigh numbers higher than about 105, verifying
the 1/3 power law scaling previously noted.

Experimental data for the free–rigid unsteady Rayleigh–
Bénard case have been reported by Spangenberg and Row-
land [17] and Foster [18], but a step in surface temperature
was not obtained since evaporative cooling was the domi-
nant effect. An approximate piecewise linear cooling on
top was found experimentally. Using infrared radiometry
to record surface layer temperature, the latter author com-
pared his results with those obtained by the former, check-
ing them against calculations made with the amplification
model [7]. Good correspondence with this theory was
found, however, due to the linear evolution of temperature
on the top boundary, the experimental results fitted better a
�2/5 exponent, instead of the �2/3 power law expected for
the step change case. Table I of Foster [18] lists several
results for the onset time given combinations of Prandtl
and Rayleigh numbers. That table also includes results
from Spangenberg and Rowland [17]. This data set agree
well with amplification model calculations by Foster [7]
using amplification factors between 10 and 100, showing
that computed values of the onset times for low amplifica-
tion and linear cooling describe well the onset of evapora-
tive convection, as previously mentioned. On the other
hand, the latter measurements yield times that differ in
approximately three orders of magnitude with the present
propagation theory results. Differences appear to reside
solely on the different applicable power laws, with sc step/
sc linear � 10�3 in the range of Ra values analyzed, since
for the step cooled system Ras3=2c ¼ C1 (constant), while
in the linearly cooled one the scaling is rather Ras5=2c ¼ C2

(constant).
In the case of convection induced by gas absorption with

free–rigid boundaries, defining a Rayleigh number based
on a concentration step, Ra = gc(C � Cb)L

3D�1m�1 (c, C,
Cb and D are the concentration coefficient of expansion,
equilibrium and bulk concentration of solute and mass dif-
fusion coefficient, respectively), along with the time scale
L2/D, Plevan and Quinn�s data [19] yield measured dimen-
sionless onset times sm � 2.1 · 10�3 for carbon dioxide in
water and sm � 1.3 · 10�4 for sulphur dioxide in water.
Although Pr � 6.25 in both cases, differences may come
partly from the better solubility of the latter gas in water
[20]. Corresponding time ratios, compared with that
obtained from Eq. (10), are sm/sc � 11 and 13.1, respec-
tively. Similarly, Blair and Quinn [20] found Ras3=2m � 300
for sulphur dioxide in water. Using data from Table 1, time
ratios are sm/sc � 8.2, 10.3 and 10.6, for Prandtl numbers of
7, 100, and 1000, respectively. In both works, RaJ 106.
Unfortunately, it is impossible to build similar relations
with the experimental setup information from Tan and
Thorpe [21], since no liquid layer thickness was specified
in that paper. On the other hand, in the latter work, an
alternative temporal and depth-dependent version of the
Rayleigh number is proposed, along with a theoretical
model where the solution of Ra(z*, t*) = z*4gcl�1D�1dC/
dz* is maximized with respect to z*, finding the length scale
Lðt�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
2Dt�

p
. The corresponding onset time is computed

using the critical Rayleigh number in Bénard convection on
a steady, horizontally infinite domain with free–rigid
boundaries [37] on the expression for the maximum
Ra(z*, t*). From Tan and Thorpe [21] data, the latter was
found to be on the order of 1000. Using Ra(z*, t*) and
L(t*) as the corresponding Rayleigh number and length
scale, yields time ratios sm/sc close to 4, but their defini-
tions are not analogous to the present Rayleigh number
and length scale. Consequently, except for Tan and
Thorpe�s data [21], which provides no clue, all the revised
references support the present estimation of a time ratio
sm/sc on the order of 10, rather that 4, for the free–rigid
system.

5. Concluding remarks

A stability analysis using propagation theory has been
conducted to predict the factors that rule the temporal
dependence of the onset of nonpenetrative convection in
an initially isothermal Boussinesq fluid. It was shown that
for the DP system, or, in other words, for high thermal dis-
turbances, which are defined in terms of Rayleigh numbers
that exceed a certain minimum for given Prandtl numbers
(Table 1), the study of nonpenetrative convection equates
conceptually and numerically the unsteady Rayleigh–
Bénard convection. An extension of previously reported
results for the rigid–rigid system using propagation theory
[11] has been proposed for free–rigid boundary conditions.
As several works have reported the study of the onset of
unsteady Rayleigh–Bénard convection, a comparison of
their results obtained with different methods, with those
obtained using the present linear model was made. For
Rayleigh and Prandtl numbers within the limits of the pres-
ent theory, good agreement was found between present
results and theoretical ones obtained with the amplification
model [7] and the stochastic method [9]. General agreement
on the validity of the scaling sc � Ra�2/3 was found. On the
other hand, numerical evidence along with experimental
data, suggest that the lag between theoretical onset times
(sc) and detected ones (su or sm) is dominated at least by
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two conditions, namely, the kinematic boundary condition
on the side where the heat flow (or temperature change) is
imposed, and the way heating (or cooling) is applied in
time. It is argued that, at difference from the theoretical
determination of sc or su, recording of sm depends in great
extent on the experiment configuration and technological
limitations. In particular, present results suggest that for
medium to large Prandtl numbers (greater than about 1)
and a top (if cooled from above) stress-free boundary, an
onset time relation of sm/sc � 10 rather than 4 (previously
proposed for the rigid–rigid system), seems to fit the avail-
able data reasonably well. Given these results, it is con-
cluded that the latter values of the sm/sc ratio are
particular cases of a more complex function that should
take into account, at least, boundary conditions for the
prediction of the onset of convective motion from the
experimental knowledge of changes in scalar fields.
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